Part Number Hot Search : 
MCH6631 DN8643S G3202 D514GWA G3202 D1200 1N965 01005
Product Description
Full Text Search
 

To Download NJMOP177 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  NJMOP177/NJMOP1772 - 1 - ver.00 precision operational amplifier features package outline precision v io =60 v max. v io =100 v max. (ta= -40 to +85 ) low offset drift S v io / S t=1.2v/ max. (ta= -40 to +85 ) cmr 115db min. low noise v ni =80nvrms typ. at f=1 to 100hz en=8nv/ hz typ. at f=100hz open loop gain av=126db min. operating temperature topr=-40 to +105 guaranteed temperature topr=-40 to +85 unity gain stable operating voltage vopr= 3v to 18v unity gain frequency f t =1.1mhz typ. package NJMOP177ge( single ): sop8 jedec 150mil NJMOP1772e( dual ): sop8 jedec 150mil replaces industry-standard opamps op-07, op-77, op-177, opa-177, ad707, etc. package description NJMOP177ge (single) 8 7 6 5 1 2 3 4 a b output a v ? ? input a +input a v + +input b output b ? input b (top view) 8 7 6 5 1 2 3 4 balanc e v ? ? inpu t +inpu t nc balance v + output (top view) NJMOP177ge NJMOP1772e NJMOP1772e (dual) general description the NJMOP177/NJMOP1772 are high pr ecision operational amplifier features very low offset voltage and drift. it also achieves high common mode rejection, low noise and high open loop gain. dc characteristics ar e 100% tested and specified from ? 40 to 85 oc. the NJMOP177/NJMOP1772 are suitable for high gain circuit amplified small signal and sets required stable behavior over a wide temperature range. application t hermocouple sensor bridge amplifier current sensor instrumentation amplifier reference voltage circuit
NJMOP177/NJMOP1772 - 2 - ver.00 absolute maximum rating (ta=25 o c unless otherwise specified) parameter symbol rating unit supply voltage v + /v - 20 v common mode input voltage (note1) v icm 20 v differential input voltage v id 30 v power dissipation p d 640(note 2) 950(note 3) mw operating temperature topr -40 +105 storage temperature tstg -50 +125 (note1) for supply voltage less than 20v, the maxi mum input voltage is equal to the supply voltage. (note2) mounted on the ei a/jedec standard board (76.2114. 31.6mm, two layer, fr-4). (note3) mounted on the ei a/jedec standard board (76.2114.3 1.6mm, four layer, fr-4). refer to following fig. a for a permissible loss when ambient temperature (ta) is ta 25c. recommended operating voltage parameter symbol test condition min. typ. max. unit supply voltage v + /v - 3 - 18 v fig. a power dissipation derating curve 0 100 200 300 400 500 600 700 800 900 1000 0255075100125 ambient temperature ta [oc] power dissipation p d [mw] sop8 (2-layer) sop8(4-layer)
NJMOP177/NJMOP1772 - 3 - ver.00 electronic characteristics (v + /v - = 15v, ta = +25oc, v cm = 0v unless otherwise specified) dc characteristics parameter symbo l test condition min. typ. max. unit input characteristics input offset voltage v io 1 20 60 v v io 2 ta = -40 to +85 20 100 v input offset voltage drift S v io / S t ta = -40 +25 / ta = +25 +85 0.3 1.2 v/ common mode input voltage r v icm 1 13 14 v v icm 2 ta = -40 to +85 13 13.5 v common mode rejection ratio cmr1 v cm = 0v -13v / v cm = 0v +13v 115 140 db cmr2 ta = -40 to +85 , v cm =0v -13v / v cm =0v +13v 110 140 db supply voltage rejection ratio svr1 v + /v - = 3v to 18v 110 125 db svr2 ta = -40 to +85 ,v + /v - = 3v to 18v 106 120 db input bias current i b 1 -2.8 1.2 2.8 na i b 2 ta = -40 to +85 -6 1.7 6 na input bias current drift S i b / S t ta = -40 +85 8 60 pa/ input offset current i io 1 0.3 2.8 na i io 2 ta = -40 to +85 0.3 4.5 na input offset current drift S i io / S t ta = -40 +85 1.5 72 pa/ differential input impedance r id (note 4) 90 m common-mode input impedance r ic (note 4) 800 g ? voltage gain av1 r l = 2k ? , vo = -10v 0v / 0v +10v / -10v +10v 126 142 db av2 ta = -40 to +85 , r l = 2k ? , vo = -10v 0v / 0v +10v / -10v +10v 120 136 db input offset voltage trim (only NJMOP177) viotri rp = 20k ? 3 mv channel separation (only NJMOP1772) cs dc 0.01 v/v output characteristics maximum output voltage v om 1 r l =10k ? 13.5 14.0 v v om 2 ta = -40 to +85 , r l = 10k ? 13.0 14.0 v v om 3 r l = 2k ? 12.5 13.0 v v om 4 ta = -40 to +85 , r l = 2k ? 12.0 13.0 v v om 5 r l = 1k ? 12.0 12.5 v output impedance r o open-loop 60 ? (note 4) theoretical value by design
NJMOP177/NJMOP1772 - 4 - ver.00 dc characteristics parameter symbol test condition min. typ. max. unit supply characteristics supply current i cc 1 a v = +1, r l = 1.6 2.0 ma (only NJMOP177) i cc 2 ta = -40 to +85 , a v = +1, r l = 1.7 2.5 ma i cc 3 v + /v - = 3v, a v = +1, r l = 0.70 0.75 ma p d 1 a v = +1, r l = 50 60 mw p d 2 v + /v - = 3v, a v = +1, r l = 4.2 4.5 mw supply current i cc 1 a v = +1, r l = 2.6 3.2 ma (only NJMOP1772) i cc 2 ta = -40 to +85 , a v = +1, r l = 2.7 3.4 ma i cc 3 v + /v - = 3v, a v = +1, r l = 1.3 1.6 ma p d 1 a v = +1, r l = 78 96 mw p d 2 v + /v - = 3v, a v = +1, r l = 7.8 9.6 mw ac characteristics parameter symbol test condition min. typ. max. unit frequency characteristics unity gain frequency f t a v = +100, r l = 2k ? , c l = 10pf 1.1 mhz slew rate +sr rise, a v = +1, v in = 1vpp, r l = 2k ? , c l = 10pf 0.1 0.3 v/s -sr fall, a v = +1, v in = 1vpp, r l = 2k ? , c l = 10pf 0.1 0.3 v/s noise characteristics equivalent input noise voltage v ni fo = 1hz to 100hz 80 nvrms equivalent input noise current i ni fo = 1hz to 100hz 3 parms
NJMOP177/NJMOP1772 - 5 - ver.00 explanation of measurement condition parameter explanation input offset voltage drift i nput offset voltage drift = ? v io / ? t ? t : amount of temperature change. ? v io : amount of input offset voltage. common mode input voltage range a range of input volt age at which the operational amplifier can function. common mode rejection ratio cmr = 20log | ( ? v cm / ? v io )| ? v cm : amount of input voltage. ? v io : amount of input offset voltage. supply voltage rejection ratio svr = 20log |( ? v s / ? v io )| ? v s : amount of supply voltage. ? v io : amount of input offset voltage. common mode input impedance r ic = ? v cm / ? i b ? v cm : amount of input voltage. ? i b : amount of input bias current. voltage gain av = 20log |( ? v o / ? v )| ? v o : amount of output voltage. ? v : amount of input offset voltage.
NJMOP177/NJMOP1772 - 6 - ver.00 typical characteristics 0 5 10 15 20 25 30 35 40 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 input offset voltage drift distribution v + /v - =5v,ta=-40 to 25 number of amplifiers input offset voltage drift [v/] 0 5 10 15 20 25 30 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 input offset voltage drift distribution v + /v - =15v,ta=-40 to 25 number of amplifiers input offset voltage drift [v/] 0 5 10 15 20 25 30 35 40 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 input offset volotage drift distribution v + /v - =5v,ta=25 to 85 number of amplifiers input offset voltage drift [v/] 0 5 10 15 20 25 30 35 40 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 input offset voltage drift distribution v + /v - =15v,ta=25 to 85 number of amplifiers input offset voltage drift [v/] 0 10 20 30 40 50 -70-60-50-40-30-20-10 0 10 20 30 40 50 60 70 input offset voltage distribution v + /v - =5v,ta=25 number of amplifiers input offset voltage [v] 0 10 20 30 40 50 -70-60-50-40-30-20-10 0 10 20 30 40 50 60 70 input offset voltage distribution v + /v - =15v,ta=25 number of amplifiers input offset voltage [v]
NJMOP177/NJMOP1772 - 7 - ver.00 -8 -6 -4 -2 0 2 4 6 8 -15 -10 -5 0 5 10 15 variation in input offset voltage vs. common mode input voltage variation in input offset voltage [v] common mode input voltage [v] input offset voltage vs. temperature v + /v - =15v, v cm =0v -100 -80 -60 -40 -20 0 20 40 60 80 100 -50 -25 0 25 50 75 100 ambient temperature [oc] input offset voltage [v] input offset voltage vs. temperature v + /v - =5v, v cm =0v -100 -80 -60 -40 -20 0 20 40 60 80 100 -50 -25 0 25 50 75 100 ambient temperature [oc] input offset voltage [v] input offset voltage vs. temperature (supply voltage) v icm =0v -100 -80 -60 -40 -20 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 ambient temperature [oc] input offset voltage [v] v+/v-=3v v+/v-=5v v+/v-=15v v+/v-=18v input offset voltage vs. common mode input voltage (supply voltage) ta=25oc 0 10 20 30 40 50 60 -15 -10 -5 0 5 10 15 common mode input voltage [v] input offset voltage [ u v] v +/v-=+5v/-5v v+/v-=+15v/-15v input offset voltage vs. supply voltage v cm =0v 0 10 20 30 40 50 0 4 8 12 16 20 24 supply voltage[v] input offset voltage[ u v] v + /v - = 15v
NJMOP177/NJMOP1772 - 8 - ver.00 -20 -10 0 10 20 30 40 50 60 -15 -10 -5 0 5 10 15 input offset voltage vs. common mode input voltage (temperature) v + /v - =15v input offset voltage [v] common mode input voltage [v] ta=-40 ta=25 ta=85 0 10 20 30 40 50 0 4 8 12162024 input offset voltage vs. supply voltage (temperature) vcm=0v input offset voltage [v] supply voltage [v] ta=-40 ta=25 ta=85 -1 0 1 2 3 4 0 50 100 150 200 warm up input offset voltage drift v + /v - =15v, gv=100db, ta=25 input offset voltage change [v] time from power supply turn on [sec] -16.5 -16 -15.5 -15 -14.5 -14 -13.5 -13 -12.5 -15 -10 -5 0 5 10 15 input offset voltage vs. output voltage v + /v - =15v, gv=100db, r l =2k, ta=25 input offset voltage [uv] output voltage [v] -4 -3 -2 -1 0 1 2 3 4 0 5 10 15 20 input offset voltage vs. trim resistance v + /v - =15v, gv=60db, ta=25 input offset voltage [mv] trim resistance rp [k] -20 -10 0 10 20 30 40 50 60 -20 -15 -10 -5 0 5 10 15 20 input offset voltage vs. common mode input voltage (supply voltage) ta=25 input offset voltage [v] common mode input voltage [v] v+/v-=18v v+/v-=15v v+/v-=5v v+/v-=3v
NJMOP177/NJMOP1772 - 9 - ver.00 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0246810 equivalent input noise voltage v + /v - =15v, bp=1~100hz equivalent input noise voltagte [v] time [sec] -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0246810 equivalent input noise voltage v + /v - =5v, bp=1~100hz equivalent input noise voltage [v] time [sec] 0 2 4 6 8 10 12 14 16 1 10 100 1000 equivalent input noise voltage rf=10k, rs=100, rg=100, ta=25 equivalent input noise voltage [nv/hz] frequency [hz] v + /v - =15v v + /v - =5v
NJMOP177/NJMOP1772 - 10 - ver.00 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -15 -10 -5 0 5 10 15 input bias current vs. common mode input voltage (temperature) v + /v - =15v input bias current [na] common mode input voltage [v] ta=-40 ta=25 ta=85 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -15 -10 -5 0 5 10 15 input offset current vs. common mode input voltage (temperature) v + /v - =15v input offset current [na] common mode input voltage [v] ta=-40 ta=25 ta=85 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -20 -15 -10 -5 0 5 10 15 20 input bias current vs. common mode input voltage (supply voltage) ta=25 input bias current [na] common mode input voltage [v] v + /v - =18v v + /v - =15v v + /v - =5v v + /v - =3v -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -20-15-10-5 0 5 101520 input offset current vs. common mode input voltage (supply voltage) ta=25 input offset current [na] common mode input voltage [v] v + /v - =18v v + /v - =15v v + /v - =5v v + /v - =3v input bias current vs. temperature 0 1 2 3 4 5 6 7 8 9 10 -50 -25 0 25 50 75 100 125 ambient temperature [oc] input bias current [na] v+/v-=+3v/-3v v +/v-=+5v/-5v v +/v-=+15v/-15v v+/v-=+18v/-18v input offset current vs. temperature -1 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 ambient temperature [oc] input offset current [na] v+/v-=3v v+/v-=5v v+/v-=15v v+/v-=18v
NJMOP177/NJMOP1772 - 11 - ver.00 40 60 80 100 120 140 10 2 10 3 10 4 10 5 common mode rejection ratio vs. frequency v + /v - =15v, gv=80db, ta=25 common mode rejection ratio [db] frequency [hz] 20 40 60 80 100 120 140 10 0 10 1 10 2 10 3 10 4 supply voltage rejection ratio vs. frequency v + /v - =14.5 to 15.5v, gv=80db, ta=25 supply voltage rejection ratio [db] frequency [hz] -svr +svr cmr vs. temperature (supply voltage) v cm =13v(v + /v - =+15v/-15v), v cm =16v(v + /v - =+18v/-18v) v cm =3v(v + /v - =+5v/-5v), v cm =1v(v + /v - =+3v/-3v) 0 20 40 60 80 100 120 140 160 180 -50 -25 0 25 50 75 100 125 ambient temperature [oc] common mode rejection ratio [db] v+/v-=+3v/-3v v +/v-=+5v/-5v v +/v-=+15v/-15v v+/v-=+18v/-18v svr vs. temperature v + /v - =+18v/-18v to +3v/-3v 0 20 40 60 80 100 120 140 160 180 -50 -25 0 25 50 75 100 125 ambient temperature [oc] supply voltage rejection ratio [db]
NJMOP177/NJMOP1772 - 12 - ver.00 0.0001 0.001 0.01 0.1 1 10 0.01 0.1 1 10 thd+n vs. output voltage v + /v - =15v, gv=20db, r f =10k, rs=1k, ta=25 thd+n [%] output voltage [vrms] f=20hz f=100hz f=1khz f=20khz 0 0.2 0.4 0.6 0.8 1 10 100 1000 10 4 10 5 10 6 thd+n vs. frequency v + /v - =15v, gv=20db, r f =10k, rs=1k, vout=100mvrms, ta=25 thd+n [%] frequency [hz] -15 -10 -5 0 5 10 15 0 5 10 15 20 25 30 35 40 output voltage vs. output current v + /v - =15v output current [v] output current [ma] +v om ta=25 -v om ta=25 +v om ta=-40 -v om ta=-40 -v om ta=85 +v om ta=85 -20 -15 -10 -5 0 5 10 15 20 10 1 10 2 10 3 10 4 10 5 maximum output voltage vs. load resistance (supply voltage) ta=25 maximum output voltage [v] load resistance [] v + /v - =18v v + /v - =18v v + /v - =15v v + /v - =15v v + /v - =5v v + /v - =5v v + /v - =3v v + /v - =3v -15 -10 -5 0 5 10 15 10 1 10 2 10 3 10 4 10 5 maximum output voltage vs. load resistance (temperature) v + /v - =15v maximum output voltage [v] load resistance [] ta=-40 ta=-40 ta=25 ta=25 ta=85 ta=85 maximum output voltage vs. temperature r l =2k ? -20 -15 -10 -5 0 5 10 15 20 -50 -25 0 25 50 75 100 125 ambient temperature [oc] maximum output voltage [v] v+/v-=3v v+/v-=5v v+/v-=15v v+/v-=18v v+/v-=3v v+/v-=5v v+/v-=15v v+/v-=18v
NJMOP177/NJMOP1772 - 13 - ver.00 -40 -20 0 20 40 60 80 -180 -120 -60 0 60 120 180 10 2 10 3 10 4 10 5 10 6 10 7 40db gain/phase vs. frequency (temperature) v + /v - =15v, gv=40db, r f =10k, rs=100, r t =50 voltage gain [db] phase [deg] frequency [hz] gain phase ta=25 ta=85 ta=-40 ta=85 ta=-40 ta=25 -40 -20 0 20 40 60 80 -180 -120 -60 0 60 120 180 10 2 10 3 10 4 10 5 10 6 10 7 40db gain/phase vs. frequency (load capacitance) v + /v - =15v, gv=40db, r f =10k, rs=100, r t =50, ta=25 voltage gain [db] phase [deg] frequency [hz] gain phase c l =0f c l =0.2f c l =0.1f c l =0.01f c l =0.047f c l =0f c l =0.2f c l =0.1f c l =0.01f c l =0.047f -40 -20 0 20 40 60 80 -180 -120 -60 0 60 120 180 10 2 10 3 10 4 10 5 10 6 10 7 40db gain/phase vs. frequency (supply voltage) gv=40db, r f =10k, rs=100, r t =50, ta=25 voltage gain [db] phase [deg] frequency [hz] gain phase v + /v - =15v v + /v - =5v v + /v - =3v v + /v - =3v v + /v - =18v v + /v - =5v v + /v - =18v v + /v - =15v 100 110 120 130 140 150 160 04812162024 voltage gain vs. supply voltage (temperature) r l =2k voltage gain [db] supply voltage [v] ta=-40 ta=25 ta=85 -40 -20 0 20 40 60 80 -180 -120 -60 0 60 120 180 10 2 10 3 10 4 10 5 10 6 10 7 40db gain/phase vs. frequency (temperature) v + /v - =5v, gv=40db, r f =10k, rs=100, r t =50 voltage gain [db] phase [deg] frequency [hz] gain phase ta=25 ta=85 ta=-40 ta=85 ta=-40 ta=25 gain vs. temperature (supply voltage) r l =2k ? 0 20 40 60 80 100 120 140 160 180 -50 -25 0 25 50 75 100 125 ambient temperature [oc] voltage gain [db] v+/v-=+3v/-3v v +/v-=+5v/-5v v +/v-=+15v/-15v v+/v-=+18v/-18v
NJMOP177/NJMOP1772 - 14 - ver.00 -10 -5 0 5 10 15 20 10 3 10 4 10 5 10 6 v.f.peak (temperature) v + /v - =15v, gv=0db, r t =50, c l =0.1f voltage gain [db] frequency [hz] ta=25 ta=85 ta=-40 -10 -5 0 5 10 15 20 10 3 10 4 10 5 10 6 v.f.peak (load capacitance) v + /v - =15v, gv=0db, r t =50, ta=25 voltage gain [db] frequency [hz] c l =0f c l =0.01f c l =0.047f c l =0.2f c l =0.1f -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 -2-10123456 pulse response (temperature) v + /v - =15v, r l =2k, c l =5pf output [v] input [v] time [s] ta=-40 ta=25 ta=85 input output -10 -5 0 5 10 15 20 10 3 10 4 10 5 10 6 v.f. peak (supply voltage) gv=0db, r t =50, c l =0.1f, ta=25 voltage gain [db] frequency [hz] v + /v - =15v v + /v - =3v v + /v - =5v v + /v - =18v -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 -2-10123456 pulse response (temperature) v + /v - =15v, r l =2k, c l =5pf output [v] input [v] time [s] ta=-40 ta=25 ta=85 input output
NJMOP177/NJMOP1772 - 15 - ver.00 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 -20-10 0 102030405060 pulse response (load capacitance) v + /v - =15v, r l =2k, ta=25 output [v] input [v] time [s] c l =0.01f input output c l =0.047f c l =0.1f c l =0.2f -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 -20-10 0 102030405060 pulse response (load capacitance) v + /v - =15v, r l =2k, ta=25 output [v] input [v] time [s] c l =0.01f input output c l =0.047f c l =0.1f c l =0.2f -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 -2 -1 0 1 2 3 4 5 6 pulse response (temperature) v + /v - =5v, r l =2k, c l =5pf output [v] input [v] time [s] ta=-40 ta=25 ta=85 input output -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 -2 -1 0 1 2 3 4 5 6 pulse response (temperature) v + /v - =5v, r l =2k, c l =5pf output [v] input [v] time [s] ta=-40 ta=25 ta=85 input output -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 -5 0 5 10 pulse response (supply voltage, load capacitance) rl=2k, ta=25 output [v] input [v] time [s] v + /v - =15v c l =100pf input output v + /v - =15v c l =1500pf v + /v - =5v c l =1500pf v + /v - =5v c l =100pf -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 -5 0 5 10 pulse response (supply voltage, load capacitance) r l =2k, ta=25 output [v] input [v] time [s] v + /v - =15v c l =100pf input output v + /v - =15v c l =1500pf v + /v - =5v c l =1500pf v + /v - =5v c l =100pf
NJMOP177/NJMOP1772 - 16 - ver.00 slew rate vs. temperature r l =2k ? 0.0 0.2 0.4 0.6 0.8 1.0 -50 -25 0 25 50 75 100 125 ambient temperature [oc ] slew rate [v/s] v+/v-=+5v/-5v fall v+/v-=+15v/-15v fall v+/v-=+15v/-15v rise v+/v-=+5v/-5v rise unity gain frequency vs. temperature gv=40db, r f =10k ? , r s =100 ? , r t =50 ? , r l =10k ? , c l =10pf 0.0 0.5 1.0 1.5 2.0 -50 -25 0 25 50 75 100 125 ambient temperature [oc] unity gain frequency [mhz] v +/v-=+5v/-5v v +/v-=+15v/-15v supply current vs. supply voltage (NJMOP177) r l =open 0 0.5 1 1.5 2 2.5 0 4 8 12 16 20 24 supply voltage [v] supply current [ma] ta=-40oc ta=105oc ta=25oc supply current vs. temperature (NJMOP177) r l =open 0 0.4 0.8 1.2 1.6 2 2.4 -50 -25 0 25 50 75 100 125 ambient temperature [oc] supply current [ma] v + /v - =3v v + /v - =5v v + /v - =15v v + /v - =18v supply current vs. temperature(NJMOP1772) r l =open 0 0.5 1 1.5 2 2.5 3 3.5 4 -50 -25 0 25 50 75 100 125 ambient temperature [oc] supply current [ma] v + /v - =18v v + /v - =15v v + /v - =5v v + /v - =3v supply current vs. supply voltage (NJMOP1772) r l =open 0 0.5 1 1.5 2 2.5 3 3.5 4 0 4 8 12 16 20 24 supply voltage [v] supply current [ma] ta=-40oc ta=105oc ta=25oc
NJMOP177/NJMOP1772 - 17 - ver.00 application information power supply bypassing the NJMOP177/NJMOP1772 are high precision operational amplifiers featuring low offset voltage, high voltage gain, high cmr, high svr and so on. to maximize such a high performance with stable operation, theNJMOP177/NJMOP1772 should be operated by clean and low impedance supply voltage. so, the bypass capacitor should be connected to the NJMOP177/NJMOP1772?s both power supply terminals (v+ and v-) as shown in fig.1. the bypass capacitors should be placed as close as possible to ic package. thermoelectric effect the NJMOP177/NJMOP1772 are high precision operational amplifiers featuring low offset voltage and low offset voltage thermal drift. to achieve such a high performance, take care about thermoelectric effect possibly occurs on each input terminal of the NJMOP177/NJMOP1772. generally, if there are thermal mismat ches at the junction of different types of metals, the thermoelectric voltage (seebeck effect) occurs at the junction. the thermoelectric voltages possibly occur at the junction of pcb metal patterns and NJMOP177/NJMOP1772?s each input terminal metal. if there is thermal mismatch in-between NJMOP177/NJMOP1772?s each input terminal metal, the thermoelectric voltages generated on each input terminal possibly have different voltage each. this voltage difference causes offset voltage and offset voltage thermal drift of the NJMOP177 /NJMOP1772. to minimize this voltage difference, the thermal mismatch in-between NJMOP177/NJMOP1772?s each input terminal and pcb metal should be minimized. ? + v+ v- 4 7 ? + v+ v- 4 8 NJMOP177 NJMOP1772 fig.1 power supply bypassing circuit
NJMOP177/NJMOP1772 - 18 - ver.00 offset voltage adjustment (only NJMOP177) the NJMOP177 has offset voltage trim terminals (pin1 and pin8) as shown in below fig.2. by connecting external potentiometer in the range of 20kohm, the offset voltage trim r ange is 3mv. this offset voltage trim is effective only for offset voltage at room temperature, not for offset voltage thermal drift. if offset voltage adjustment is not in use, leave pin1 and pin8 open (un-connected). differential amplifier differential amplifier (see below fig.3) is used in high accuracy circuit to improve common mode rejection ratio (cmr). a matching between the ratio r1/r2 = r3/r4 and r1=r3 makes the high cmr. for example, acceptable error range to obtain cmr of 130db or more is about 0.1ppm. ? + v+ v- 1 2 3 4 6 7 8 rp=20k ? NJMOP177 fig.2 offset voltage trim circuit fig.3 differential amplifier ? + v+ v- r 1 r 2 r 3 r 4
NJMOP177/NJMOP1772 - 19 - ver.00 sop8 jedec 150 mil unit : mm 5.00.3 1.27 -0.05 +0.1 0.20 0.12 m 0.40.1 0.150.1 1.50.15 0.80.2 3.90.2 6.00.4 8 5 1 4 0.74max 0 ~ 10 o 0.1 package dimensions [caution] the specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. the application circuits in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. meet jedec ms-012


▲Up To Search▲   

 
Price & Availability of NJMOP177

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X